Window Image Reflection Removal by Blind Image Separation
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Abstract

A novel second order statistics approach to blind im-
age separation has been deployed to remove reflection
image from window glass images. The reflection im-
age and the image from behind the window glass are
considered as blind sources. Since sources are un-
correlated, their low frequency as well as high fre-
guency halfbands are uncorrelated too. It is shown that
the un-mixing matrix is obtained by simultaneous di-
agonalization of covariance matrices of low and high
halfbands of the mixtures. The proposed technique
has been compared with AMUSE [1] and SOBI [2] as
two other well known second-order statistics BSS tech-
niques. Three different numerical metrics approves the
efficiency dominance of the proposed technique.

Keywords: Reflection removal, Blind image separation,
second-order statistics, covarriance matrix, subbamaitifil-
ters.

1 Introduction

Although images normally do not mix together in a
well engineered system, blind image separation is a
problem encountered in various applications such as
document image restoration, astrophysical component
separation, analysis of functional Magnetic Resonance
Imaging and removal of spurious reflections. In taking
photograph from the objects behind the window glass,
the taken photo is a mixture of the image of the objects
behind the glass and the reflection image of the objects
in front of the glass. Such event happens in window
shopping, aquarium photography and any other photog-
raphy with a glass window between camera and objects.
Also in photography of inside the water from above of
water surface, the photo is mixture of inside the water
and reflection of the sky and clouds appeared on the
water surface.

Blind source separation (BSS) [3, 4] is a well known
technique to recover multiple original sources from
their mixtures. WhileK" unknown source signals upon
transmission through a medium have been mixed to-

gether and mixture signals are collected k¥ sen-
sors, BSS try to blindly separate the sources from
mixed observed data without any prior information of
the source signals and mixing process. In mathemat-
ical model, theM x 1 vectorx of observed signals
x(t) = (21(t) 22(t) --- zp(t))T is multiplication

of K x 1 vectors of unknown source signals(t) =
(51(t) s2(t) --- sk (t))T by unknown mixing matrix

A € RMXE .

xz(t) = As(t) + n(t) 1)

wheren(t) is a possible additive noise. Given only the
observation signals(t) = (x1(t) z2(t) -+ xar(t))7,

the solution of BSS problem seeks for the b#gt €
RE*M as un-mixing matrix to extract signals as much
as possible close to unknown source signals as follows:

y(t) = We(l) )

wherey(t) is K x 1 vector of extracted signajg(t) =
(y1(t) y2(t)--- yx(t))T. W is obtained in the way
that the estimated sources to be spatially uncorrelated
or as independent as possible, in the sense of minimiz-
ing various functions that measure independence [5-
9]. This measure is based upon second-order statistics
(SOS) or higher-order statistics (HOS). Many second-
order BSS approaches have been presented in the litera-
ture [10- 18]. One of the well known second-order BSS
methods is an algorithm for multiple unknown signals
extraction (AMUSE) [1]. AMUSE converts the prob-
lem of blind identification of mixing matrix to simulta-
neous diagonalization (SD) problem of two covariance
matrices of mixtures and their delayed signals. The
other well known second-order BSS method is second-
order blind identification (SOBI) algorithms [2]. SOBI
employs joint diagonlization of covariance matrix of
mixtures and covariance matrices of different delayed
mixtures to obtain un-mixing matrix.

In this paper, the reflection over window glass is
blindly separated from the image of the objects be-
hind the glass by using a BSS approach by deploy-
ing second-order statistics of the sources in two dif-
ferent views at the same time. The proposed BSS is
based on assumption that sources are mutually uncor-
related. When sources are uncorrelated, their subbands



obtained by linear filters are uncorrelated too. The si-

multaneous diagonalization (SD) of covariance matri- Considery(t) andy(t) are respectively low and high

ces of the low halfbands and high halfbands of image halfbands of the recovered signalsWy y(¢) andy(t)

mixtures has been deployed to remove glass reflection have been obtained by a linear lowpass filter and a lin-

of window images. The proposed BSS method has been ear highpass filter, respectively. Throughout this sec-

compared with AMUSE and SOBI. tion the following assumptions are made unless stated
The rest of the paper is as follows. In section 2, the otherwise:

BSS by SD of high and low halfbands has been de-
scribed. Experimental results and discussions are pre-
sented in section 3. Finally, Section 4 concludes the
paper.

2 BSS by simultaneous diagonal-
ization of low and high half-
bands

The proposed BSS is based on second-order statistics
of low and high halfbands of the uncorrelated sources.
In order to extend the theory of the proposed BSS,
first we express some properties of responses of a lin-
ear filters to uncorrelated signals. Consider a vec-
tor of signalss(t) = [s1(t), s2(t), -+ ,sx(t)]T, and

the vector of responses of a linear filter to them as
S(t) = [51(t),52(t), -+ ,5x(t)]T. For responses of a
linear filter to a vector of signals, the following proper-
ties can be obtained;

e Property 1 If signalss(¢) are mutually uncorre-
lated, thers(t) the response signals of a linear fil-

e Assumption 1 : The mixing matrixA €¢ RM*K
is a full column rank matrix with\/ > K, and it
is the same for all frequency contents of signals.

e Assumption 2 : Sources are mutually uncorrelated
with different autocorrelation functions.

E [87;8]'] = 0,
Esisi] # E[s;s;]

i 7]
iFJ

()
8

e Assumption 3 : Autocorrelation functions of low
halfbands of the sources are different from auto-
correlation functions of their high halfbands.

If W is the un-mixing matrix, based on assumption 2 re-

covered source signals are mutually uncorrelated. Also,

since low and high halfbands are obtained by linear fil-

ters, from property 1 , the covariance matricey@f
andy(¢) are diagonal matrices;

ter to them are also mutually uncorrelated. Cy = EI[w] (10)
= diag (E[rih], E[g232] .-, E [ixcy
Elsis]) =0, i#j —sE[s5]=0 i#j () g (B ] B el o Bloncnc).
_ _ | Cp = E[W'] (11)
So, the covariance matrix of the response signals ) . . o
= diag (E[y11], E [9292], -+, E [YxYK]),

is a diagonal matrix;

Cs

diag (E [5151], E'[8252] , -+ , B[Sk 3K])
e Property 2 Let y(t) andX(t) are respectively
responses of a linear filter tp(t) and x(¢). If

y(t)=Ux(t), U € RE*M Then, we have

— Ux() ()

®)

where Cxx and Cyy are respectively covariance
matrices ofk(¢) andy(t).

and

Let's remember the above properties and go back
to the BSS problem. Vector of/ mixture signals
X(t) = [x1(t), z2(t),- -+ , 2 (t)]T has been observed
by M sensors. BSS looks for the best estimate of un-
mixing matrix W i 7 in order to recover the vector
of K unknown source signaigt) = [y1(t), y2(t), - -

,yx (1)]" by EQ.(2).

y(t) = Wx(t) ~ s(t) (6)

whereCy, andCy, are covariance matrices pft) and
y(t). Furthermore, since from Assumption 3 the low
and high halfbands of the sources have different auto-
correlation functions, botiCy, and Cy, are non-zero
distinct matrices. Taking into accounft) = Wx(¢)

and considering the property 2, we have

Cyy = WCx W™
6‘yy = WéxxWT

(12)
(13)

whereCyy and éxl are covariance matrices &fand
X. SinceC\yy andCy, are distinct matrices, it follows
from Eqgs.(12) and (13) thaf',x and Cyx are distinct
matrices too. Moreover, Eqgs.(12) and (13) convey that
simultaneous diagonalization of two distinct matrices
C,x andCyy estimates the un-mixing matriW/ up to
its re-scaled and permuted version.

For the sake of simplicity, the problem of simultane-
ous diagonalization is converted to generalized eigen-
value decomposition (GEVD) [1] as follows. Since, in



the case of separatiof,, andC,y are distinct diag-
onal matrices, their multiplicatio®y, = Cy,Cyy is a
diagonal matrix;

Ry = Cwéw (14)
= diag (E )11 E [v191], E [§292] E [Y272], - - -
-, By yx]E [YxYK])
On the other hand, from Egs. (12) and (13)
Ry = [WCW] [WéXXWT] (15)
= WCx [W'W] CrW T (16)

If we convert the problem to GEVD, it will allow us to
make the assumption of orthogonality as follows:

e Assumption 4 : The un-mixing matridV can be
composed of orthogonal separating vectors.

By applying Assumption 4W”W = 1) to Eq.(15),
we have

Cxxéxx = WilRyyW. (17)

SinceRyy is a diagonal matrix, Eq.(17) conveys that:
The un-mixing matrix W is the matrix which diagonal-
izes Cyxx Cxx-

Based on the result of Eq.(17) and by using diago-
nalization theorem [19], the un-mixing mati¥ is ob-
tained as follows.

The un-mixing matrix W is composed of eigenvectors of
CxxCxx- L

Since, CyxCyx IS @ symmetric square matrix, its
eigenvectors are orthogonal, and Assumption 4 is ap-
proved.

The algorithm of blind source separation by simul-
taneous diagonalization of two covariance matrices of
responses of two different linear filters to the mixture
signals can now be described by the following steps .

The Algorithm Qutline:

e Step1: Obtainx(t) andx(t) the responses of two
different linear filtersf” and F to observed mix-
ture signals(t).

e Step 2: ComputeCyy andéXX the covariance ma-
trices ofx(t) andX(t) as well as their multiplica-

thﬂ Rxx = C‘xxCxx.

e Step 3 : Find the generalized eigenvector matrix
V for the generalized eigenvalue decomposition;

RV =VD (18)
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Figure 1: Frequency responses of the deployed lowpass
filter (top) and highpass filter (bottom).

e Step 4 : The un-mixing matrix up to its re-scaled
and permuted version is given by = V on the
condition that all eigenvalues are real and distinct.

The quality of separation depends on how much the
assumptions 2 and 3 are strong. The more different au-
tocorrelation functions of the low halfbands from au-
tocorrelation functions of the high halfbands results in
better separation result.

3 Results and Discussion

To empirically evaluate potential usefulness of the pro-
posed method, some evaluation tests. We have used
IIR elliptic lowpass and highpass filters to obtain low
and high halfbands of the mixtures, respectively. In
this simulation, in all of the cases the lowpass filter is a
minimum order filter with a normalized passband fre-
quency of 0.2, a stopband frequency of 0.25, a pass-
band ripple of 1 dB, and a stopband attenuation of 60
dB, and the highpass filter is also a minimum order
filter with a normalized passband frequency of 0.3, a
stopband frequency of 0.25, a passband ripple of 1 dB,
and a stopband attenuation of 60 dB. The above men-
tioned frequencies of the filters specifications are nor-
malized with respect to sampling frequency of the sig-
nals. Since, from Niquist sampling theorem the band-
width of the signals is maximally considered as half
the sampling frequency, to obtain halfbands of the mix-
tures, the optimum stop frequency of both lowpass and
highpass filters is%, where fs is the sampling fre-
quency. Fig. 1 shows frequency responses of the de-
ployed lowpass and high pass filters.

We have compared the performance of the proposed
method with two well known second-order BSS al-



gorithms, AMUSE (Algorithm for Multiple Unknown
Signals Extraction) [1] and SOBI (Second Order Blind
Identification) [2]. Both AMUSE and SOBI jointly
exploit the second order statistics (correlation matri-
ces for different time delays) and temporal structure of
sources. In this simulation, the optimal delayl isme
sample in AMUSE BSS, and number of matrices which
are jointly diagonalized at each run of SOBI algorithm
is 4.

We have evaluated the method with a real experi-
ment. Two images have been taken of the same view ¢
street from inside the window glass of a room. Both im-
ages belong to the same time of the day in different light
conditions of the room. Figure 2 (last page) shows the
taken photos and reflection removed photos as well as
extracted reflection by the above mentioned BSS meth-
ods. There exist many possible performance criterion
in the literature [20]. Most of evaluation methods are by
using sources or global matrix (multiplication of mix-
ing matrix and demixing matric; = AW). But here,
since, mixing matrix and sources are not available, it
is not possible to use most of evaluation methods men-
tioned in literature. We have just real mixed observed
images and separated ones. In order to evaluate the
separation performance, we have used three numeri-
cal indexes for measuring similarity of recovered im-

ages obtained by each method. We have measured the

correlation, mean absolute dsitance (MAD) and mean
squared distance (MSD) between two recovered images
obtained by each method. Each of the less correlation,
the more MAD and the more MSD individually shows
the less similarity of recovered images as well as the
better performance of separation. Table.1 shows these
numerical evaluations result in reflection removal from
real reflected window images of figure.2. As it is seen
all the three indexes approve higher performance of the
proposed method.

3.1 Robustness of reflection removal

In addition to real experiment of Fig.2, the robustness
of the method to noise and different images and reflec-
tions has been artificially investigated too. To aim this,
we have used a set of 15 different gray-scale images as
source images and reflections. They were randomly se-

Table 1: Performance comparison of the proposed
method with AMUSE and SOBI in reflection removal
of real window glass images of figure 2.

BSS Methods

AMUSE | SOBI | Proposed
Correlation : 0.8704 0.8707 0.8583
MAD : 4.5892¢ + 03 | 4.5569¢ + 03 | 6.2269¢ + 03
MSD : 30.5779 30.5089 36.7917
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Figure 3: The averagednd(G) Vs. variance of noise
in separation mixed images by AMUSE (plus - black),
SOBI (circle - pink), And SD of low and high halfbands
(star - blue).

lected and mixed each other with full rank random ma-
trix. The mixing matrix was the same for all methods.
At each noise level, the performance of the methods
have been compared by averaged result of 200 Mont
Carlo runs. Since the mixing matrix was available for
evaluation, we used thed(G) [20] the index based on
global matrix. The global matrix is obtained by multi-
plication of mixing and de-mixing matrice&s = W A.
This performance index is as follows
2
1

-] o

whereK is dimension ofG. Indeed, this non-negative
index is zero in the case of perfect separation, and its
the smaller value indicates the more proximity to the
desired solutions.

Fig.3 shows the averagedd(G) Vs. variance of noise

in separation of gray-scaled images. As it is seen, the
proposed method is less affected by noise level than the
others and it has the highest performance in comparison
to the others.

nd(G) = wmE— [Zf(
G gI?

K K
+ Z] (Z’L mfza:\G;,)jP

4 conclusion

In this paper, the reflection over window glass images
has been removed by simultaneous diagonalization of
low and high halfbands of the mixtures. Decomposing
the mixtures to the set of low subband and high sub-
band mixtures enables us to have two different views of
the mixtures. The simultaneous diagonalization in two
different views results in higher performance of sepa-
ration. The proposed second order technique has been
compared with AMUSE [1] and SOBI [2] in a real ex-
periment. Furthermore, it robustness to noise and dif-



ferent sources has been compared to the others. Three [11] A. Belouchrani, K. A. Meraim, J. F. Cardoso and

different numerical metrics approves dominance of the
proposed BSS to the others in removing the reflection
from window glass images.
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Figure 2: Real window images with reflection®{ row), separated window images and reflections by AMUSE (
row), by SOBI (3" row) and by Simultaneous Diagonalization of low and higHlvads ( bottom row).



